Admissible Heuristics for Automated Planning
نویسنده
چکیده
The problem of domain-independent automated planning has been a topic of research in Artificial Intelligence since the very beginnings of the field. Due to the desire not to rely on vast quantities of problem specific knowledge, the most widely adopted approach to automated planning is search. The topic of this thesis is the development of methods for achieving effective search control for domain-independent optimal planning through the construction of admissible heuristics. The particular planning problem considered is the so called “classical” AI planning problem, which makes several restricting assumptions. Optimality with respect to two measures of plan cost are considered: in planning with additive cost, the cost of a plan is the sum of the costs of the actions that make up the plan, which are assumed independent, while in planning with time, the cost of a plan is the total execution time – makespan – of the plan. The makespan optimization objective can not, in general, be formulated as a sum of independent action costs and therefore necessitates a problem model slightly different from the classical one. A further small extension to the classical model is made with the introduction of two forms of capacitated resources. Heuristics are developed mainly for regression planning, but based on principles general enough that heuristics for other planning search spaces can be derived on the same basis. The thesis describes a collection of methods, including the h, additive h and improved pattern database heuristics, and the relaxed search and boosting techniques for improving heuristics through limited search, and presents two extended experimental analyses of the developed methods, one comparing heuristics for planning with additive cost and the other concerning the relaxed search technique in the context of planning with time. Experiments aim at discovering the characteristics of problem domains that determine the relative effectiveness of the compared methods; results indicate that some plausible such characteristics have been found, but are not entirely conclusive. Parts of the material in this thesis has previously appeared in the following papers: Haslum, P., and Geffner, H. 2000. Admissible heuristics for optimal planning. In Proc. 5th International Conference on Artificial Intelligence Planning and Scheduling (AIPS’00), 140 – 149. AAAI Press. Haslum, P., and Geffner, H. 2001. Heuristic planning with time and resources. In Proc. 6th European Conference on Planning (ECP’01), 121 – 132. Haslum, P. 2004. Improving heuristics through search. In Proc. European Conference on AI (ECAI’04), 1031 – 1032. Haslum, P.; Bonet, B.; and Geffner, H. 2005. New admissible heuristics for domainindependent planning. In Proc. 20th National Conference on AI (AAAI’05), 1163 – 1168. Haslum, P. 2006. Improving heuristics through relaxed search – an analysis of TP4 and hspa in the 2004 planning competition. Journal of AI Research 25.
منابع مشابه
Improving Plan Quality through Heuristics for Guiding and Pruning the Search: A Study Using LAMA
Admissible heuristics are essential for optimal planning in the context of search algorithms like A*, and they can also be used in the context of suboptimal planning in order to find quality-bounded solutions. In satisfacing planning, on the other hand, admissible heuristics are not exploited by the best-first search algorithms of existing planners even when a time window is available for impro...
متن کاملAdmissible Heuristics for Automated Planning by Patrik Haslum
The problem of domain-independent automated planning has been a topic of research in Artificial Intelligence since the very beginnings of the field. Due to the desire not to rely on vast quantities of problem specific knowledge, the most widely adopted approach to automated planning is search. The topic of this thesis is the development of methods for achieving effective search control for doma...
متن کاملPlanning Graph Based Heuristics for Automated Planning
One of the most successful algorithms in the last few years for solving classical planning problems is Graphplan [3]. This algorithm can be seen as a disjunctive version of forward state space planners. The algorithm has two interleaved phases: a forward phase where a polynomial-time data structure called ”planning graph” is incrementally extended, and a backward phase where that planning graph...
متن کاملAutomated Planning and Acting
ion Heuristics An abstraction of a planning domain Σ is a γ-preserving homomorphism from Σ onto a smaller planning domain Σ′. For each planning problem P = (Σ, s0, g), this defines a corresponding abstraction P ′ = (Σ′, s0, g ′); and if we let c∗ denote the cost of an optimal solution to a planning problem, then it follows that c∗(P ′) ≤ c∗(P ). If Σ′ is simple enough that we can compute c∗(P ′...
متن کاملCost-Optimal Algorithms for Hierarchical Goal Network Planning: A Preliminary Report
There is an impressive body of work in developing search heuristics and other reasoning algorithms to guide domainindependent planning algorithms towards (near-) optimal solutions. However, very little effort has been expended in developing analogous techniques to guide search towards high-quality solutions in domain-configurable planning formalisms, such as HTN planning. In lieu of such techni...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006